# ASPEK KEUANGAN Capital Budgeting

MANAJEMEN PROYEK

#### Investment decisions

- Objectives for this session :
- Review investment rules
  - NPV, IRR, Payback
- BOF Project
  - Free Cash Flow calculation
  - Sensitivity analysis, break even point
  - Inflation

#### Investment rules

- Net Present Value (NPV)
  - Discounted incremental free cash flows
  - Rule: invest if NPV>0
- Internal Rate of Return (IRR)
  - IRR: discount rate such that NPV=0
  - Rule: invest if IRR > Cost of capital
- Payback period
  - Numbers of year to recoup initial investment
  - No precise rule
- Profitability Index (PI)
  - PI = NPV / Investment
  - Useful to rank projects if capital spending is limited



#### Internal Rate of Return

- Alternative rule: compare the internal rate of return for the project to the opportunity cost of capital
- Definition of the Internal Rate of Return IRR: (1-period)

$$IRR = Profit / Investment = (C_1 - I) / I$$

- In our example: IRR = (125 100)/100 = 25%
- The Rate of Return Rule: Invest if IRR > r
- In this simple setting, the NPV rule and the Rate of Return Rule lead to the same decision:
- NPV =  $-I + C_1/(1+r) > 0 \Leftrightarrow C_1 > I(1+r) \Leftrightarrow (C_1-I)/I > r \Leftrightarrow IRR > r$

# IRR: a general definition

- The Internal Rate of Return is the discount rate such that the NPV is equal to zero.
- $-I + C_1/(1 + IRR) \equiv 0$
- In our example:
- -100 + 125/(1+IRR)=0
- $\Rightarrow$  IRR=25%



#### Internal Rate of Return IRR

- Can be viewed as the "yield to maturity" of the project
  - Remember: the yield to maturity on a bond is the rate that set the present value of the expected cash flows equal to its price
- Consider the net investment as the price of the project
  - The IRR is the rate that sets the present value of the expected cash flows equal to the net investment
  - The IRR is the rate that sets the net present value equal to zero

### What do CFOs Use?

% Always or Almost Always

| • | Internal Rate of Return   |       | 75.6% |
|---|---------------------------|-------|-------|
| • | Net Present Value         |       | 74.9% |
| • | Payback period            | 56.7% |       |
| • | Discounted payback period |       | 29.5% |
| • | Accounting rate of return |       | 30.3% |
| • | Profitability index       |       | 11.9% |

• Based on a survey of 392 CFOs

Source: Graham, John R. and Harvey R. Campbell, "The Theory and Practice of Corporate Finance: Evidence from the Field", Journal of Financial Economics 2001

# IRR Pitfall 1: Lending or borrowing?

- Consider following projects:
- 0 1 IRR NPV(10%)
- A -100 +120 20% 9.09
- B +100 -120 20% -9.09
- A: lending Rule IRR > r
- B: borrowing Rule IRR<*r*



### IRR Pitfall 2 Multiple Rates of Return

- Consider the following project
- Year 0 1 2
- CF -1,600 10,000 -10,000
- 2 "IRRs": +25% & +400%
- This happens if more than one change in sign of cash flows
- To overcome problem, use modified IRR method
  - Reinvest all intermediate cash flows at the cost of capital till end of project
  - Calculate IRR using the initial investment and the future value of intermediate cash flows



# IRR Pitfall 3 - Mutually Exclusive **Projects**

**Scale Problem** 

- $C_0$   $C_1$  NPV<sub>10%</sub> IRR
- Small -10 + 208.2 100%
- Large -50 +80 22.7 60%
- $C_0$   $C_1$  NPV<sub>10%</sub> IRR
- L-S -40 +60 14.5 50%

#### **Timing Problem**

$$C_0$$
  $C_1$   $C_2$  NPV<sub>8%</sub> IRR  
A -100 +20 +120 19.8 20%  
B -100 +100 +30 17.0 24.2%

Look at incremental cash flows

$$C_0 \qquad C_1 \qquad C_2 \qquad \text{NPV}_{8\%} \text{ IRR}$$
 To choose, look at incremental cash flows 
$$\text{A-B} \quad 0 \qquad -80 \quad +90 \quad 2.9 \quad 12.5\%$$

## Mutually Exclusive Project - Illustration



## Payback

• The payback period is the number of years it takes before the cumulative forcasted cash flows equals the initial investment.

| • | Example: Year | 0      | 1   | 2     | 3     | Payback | NPV $r=10%$ |
|---|---------------|--------|-----|-------|-------|---------|-------------|
|   | A             | -1,000 | 500 | 500   | 1,000 | 2       |             |
|   | В             | -1,000 | 0   | 1,000 | 0     | 2       | -174        |
|   | C             | -1,000 | 500 | 500   | 0     | 2       | -132        |

- A very flawed method, widely used
  - Ignores time value of money
  - Ignores cash flows after cutoff date

### Profitability Index

- Profitability Index = PV(Future Cash Flows) / Initial Investment
- A useful tool for selecting among projects when capital budget limited.
- The highest weighted average PI

#### **NPV** - Review

- NPV: measure change in market value of company if project accepted
- As market value of company  $V = PV_t$  Future Free Cash Flows)  $NPV = \Delta V = \sum_{t} \frac{\Delta F C F_t}{(1+r)^t}$
- $\Delta V = V_{\text{with project}} V_{\text{without project}}$
- Cash flows to consider:
  - cash flows (not accounting numbers)
    - do not forget depreciation and changes in WCR
  - incremental (with project without project)
    - forget sunk costs
    - include opportunity costs
    - include all incidental effects
    - beware of allocated overhead costs

#### Inflation

- Be consistent in how you handle inflation
  - Discount nominal cash flows at nominal rate
  - Discount real cash flows at real rate
  - Both approaches lead to the same result.
- Example: Real cash flow in year 3 = 100 (based on price level at time 0)
  - Inflation rate = 5%
  - Real discount rate = 10%

Discount real cash flow using real rate

$$PV = 100 / (1.10)^3 = 75.13$$

Discount nominal cash flow using nominal rate

Nominal cash flow =  $100 (1.05)^3 = 115.76$ Nominal discount rate = (1.10)(1.05)-1 = 15.5%PV =  $115.76 / (1.155)^3 = 75.13$ 

# Interest rates and inflation: real interest rate

• Nominal interest rate = 10% Date 0 Date 1

• Individual invests \$ 1,000

• Individual receives \$ 1,100

Hamburger sells for \$1.06

• Inflation rate = 6%

 Purchasing power (# hamburgers) H1,000 H1,038

• *Real* interest rate = 3.8%

(1+Nominal interest rate)=(1+Real interest rate)×(1+Inflation rate)

Approximation:

**Real interest rate** ≈ **Nominal interest rate** - **Inflation rate** 

# Investment Project Analysis: BOF

Big Oversea Firm is considering the project

| Year               | 0  | 1   | 2   | 3  |
|--------------------|----|-----|-----|----|
| Initial Investment | 60 |     |     |    |
| Resale value       |    |     |     | 20 |
| Sales              |    | 100 | 100 |    |
| Cost of sales      |    | 50  | 50  |    |

Corporate tax rate = 40%

Working Capital Requirement = 25% Sales

Discount rate = 10%

# BOF: Free Cash Flow Calculation

| Year           | 0   | 1   | 2   | 3   |
|----------------|-----|-----|-----|-----|
| Sales          |     | 100 | 100 |     |
| Cost of sales  |     | 50  | 50  |     |
| EBITDA         |     | 50  | 50  |     |
| Depreciation   |     | 30  | 30  |     |
| EBIT           |     | 20  | 20  |     |
| Taxes          |     | 8   | 8   | 8   |
| Net income     |     | 12  | 12  | -8  |
|                |     |     |     |     |
| Net income     |     | 12  | 12  | -8  |
| Depreciation   |     | 30  | 30  | 0   |
| DWCR           |     | 25  | 0   | -25 |
| CFInvestment   | -60 |     |     | 20  |
| Free Cash Flow | -60 | 17  | 42  | 37  |
|                |     |     |     |     |

MBA 2007 Capital Budgeting (1)

# BOF: go ahead?

• NPV calculation:  $NPV = -60 + \frac{17}{1.10} + \frac{42}{(1.10)^2} + \frac{37}{(1.10)^3} = 17.96$ 

- Internal Rate of Return = 24%
- Payback period = 2 years

# BOF: checking the numbers

- Sensitivity analysis
  - What if expected sales below expected value?

| Sales | 60    | 70   | 80   | 90    | 100   |
|-------|-------|------|------|-------|-------|
| NPV   | -1.28 | 3.53 | 8.34 | 13.15 | 17.97 |

- Break-even point
  - What is the level of sales required to break even?
  - Break even sales = 62.7

# BOF Project with inflation rate = 100%

#### Nominal free cash flows

| Year           | 0   | 1   | 2   | 3    |
|----------------|-----|-----|-----|------|
| Sales          |     | 200 | 400 |      |
| Cost of sales  |     | 100 | 200 |      |
| EBITDA         |     | 100 | 200 |      |
| Depreciation   |     | 30  | 30  |      |
| EBIT           |     | 70  | 170 |      |
| Taxes          |     | 28  | 68  | 64   |
| Net income     |     | 42  | 102 | -64  |
| Net income     |     | 42  | 102 | -64  |
| Depreciation   |     | 30  | 30  | 0    |
| ΔWCR           |     | 50  | 50  | -100 |
| CFInvestment   | -60 |     |     | 160  |
| Free Cash Flow | -60 | 22  | 82  | 196  |

Nominal discount rate = (1+10%)(1+100%)-1 = 120%

$$NPV = -14.65$$
  $IRR = 94\%$ 

### **REFERENSI**

- Solvay Business School
- Université Libre de Bruxelles
- Fall 2007